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 In this memo, the transformation equation between Boozer magnetic coordinates1 

and VMEC coordinates2 is derived. (Note: for clarity, here we use the angle argument 

convention which is opposite the usual toroidal angle convention in the VMEC 

code, that is, n->-n.)  Both coordinate systems use the toroidal flux function ψ as the 

radial variable. In Boozer coordinates, the contravariant and covariant components of the 

magnetic field define the angular variables  and  (the poloidal angle and the toroidal 

angle, respectively), through the relations: 

 

  (1) 

 

Here, is the rotational transform,  is the poloidal current (or toroidal magnetic 

field) function,  is the toroidal current function, and  is a periodic 

function representing the Pfirsch-Schlüter current.  Alternatively, the contravariant 

representation of the magnetic field in VMEC coordinates can be written:  

 

 (2) 

 

Here,  is the VMEC poloidal angle for which the magnetic field lines are 

straight,  is the poloidal angle used in the VMEC code, and  is the cylindrical 

toroidal angle.  The stream function  is introduced in VMEC to accelerate 

the convergence in Fourier space for the inverse representation of R and Z, and its Fourier 

spectrum is available as standard output from VMEC on the half-integer radial mesh. 

[(VMEC uses a normalized radial flux coordinate s, so that the toroidal flux is 

]. 



 The transformation between the Boozer and VMEC angles is constrained by toroidal 

and poloidal periodicity and the requirement that the straight field line (contravariant) 

form of B be preserved.  This results in the following relations: 

   (3) 

Here, p is a doubly-periodic transformation function that will be determined. A field-line 

differential equation for p is derived in the standard way by considering the 

transformation of the Jacobian  between the two representations and 

cylindrical coordinates.  The result, upon using Eq. (3) to express  in terms of , is 

   

   (4) 

 

The Jacobian in VMEC coordinates, , is calculated at half-integer radial mesh points 

from standard VMEC equilibrium output.  The Boozer Jacobian  is related to the 

magnetic field strength by taking the dot product of the co- and contra-variant forms for 

B in Eq. (1), so that Eq. (4) becomes: 

  

 .  (5) 

 

This can be solved algebraically for p (on irrational surfaces) in Fourier space in terms of 

the VMEC spectra of : 

  

  . (6) 

 



Here,   Eq. (6) applies to all but the  mode of p, which can be 

chosen equal to zero.  The solubility condition for Eq. (5) requires that . 

 

 The current flux functions g and I can be determined from the VMEC output in 

terms of the surface-averaged covariant components of B.  Indeed, this can be readily 

seen by inserting the transformation Eq. (3) into the covariant Boozer representation for 

B: 

  . (7) 
  
Here, .  The covariant components of the magnetic field, in VMEC 
coordinates, are obtained from Eq. (7): 
 
  

  (8) 

 
In Eq. (8),  for . 

 Note that the quantities on the left of Eq. (8) can be calculated in VMEC coordinates 

from VMEC output.  Integrating Eq. (8) over both angles to annihilate the (unknown) 

transformation function p yields solubility constraints determining the two current flux 

functions: 

  (9) 

 
The overbar in Eq. (9) denotes the angle average  over the VMEC 

angles. Note that the two relations in Eq. (8) are indeed consistent, since 

. 

 Equation (8) provides a nonsingular alternative to Eq. (5) for determining the 

transformation function p.  It corresponds to a factorization of into co- and contra-

variant components and eliminates the singular denominator occurring at the rational 



surfaces in Eq. (6).  In Fourier space, Eq. (8) can be solved for the spectrum of the 

transformation function p: 

  
  

  (10) 

 

 To demonstrate the application of these transformation equations, consider the 

problem of converting any scalar function  from VMEC to Boozer coordinates.  (A 

scalar satisfies ).  For example,  

comprises a useful set of such invariants.  From (R,Z), one can construct the metric tensor 

and, subsequently, all components of the magnetic field.  Converting p from VMEC to 

Boozer coordinates allows one to reverse the transformation in Eq. (3). This provides a 

useful method for checking the numerical accuracy of the transformation scheme.  To 

obtain the Boozer spectrum of  (assuming its VMEC coordinate representation is 

known), the transformation Eq. (3) can be applied as follows: 

   

  (11) 

  
 The Jacobian between Boozer and VMEC coordinates is obtained from Eq. (3): 

 

  (12) 

 

Note that the Jacobian is area-preserving (as it must be). 
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